Almost Intersecting Families of Sets

نویسندگان

  • Dániel Gerbner
  • Nathan Lemons
  • Cory Palmer
  • Balázs Patkós
  • Vajk Szécsi
چکیده

Let us write DF (G) = {F ∈ F : F ∩ G = ∅} for a set G and a family F . Then a family F of sets is said to be (≤ l)-almost intersecting (l-almost intersecting) if for any F ∈ F we have |DF (F )| ≤ l (|DF (F )| = l). In this paper we investigate the problem of finding the maximum size of an (≤ l)almost intersecting (l-almost intersecting) family F . AMS Subject Classification: 05D05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Cross-Intersecting and Almost Cross-Sperner Pairs of Families of Sets

For a set G and a family of sets F let DF (G) = {F ∈ F : F ∩ G = ∅} and SF (G) = {F ∈ F : F ⊆ G or G ⊆ F}. We say that a family is l-almost intersecting, (≤ l)-almost intersecting, l-almost Sperner, (≤ l)-almost Sperner if |DF (F )| = l, |DF (F )| ≤ l, |SF (F )| = l, |SF (F )| ≤ l (respectively) for all F ∈ F . We consider the problem of finding the largest possible family for each of the above...

متن کامل

Intersecting Families are Essentially Contained in Juntas

A family J of subsets of {1, . . . , n} is called a j-junta if there exists J ⊆ {1, . . . , n}, with |J | = j, such that the membership of a set S in J depends only on S ∩ J . In this paper we provide a simple description of intersecting families of sets. Let n and k be positive integers with k < n/2, and let A be a family of pairwise intersecting subsets of {1, . . . , n}, all of size k. We sh...

متن کامل

Counting Families of Mutually Intersecting Sets

We determine the number of maximal intersecting families on a 9-set and find 423295099074735261880. We determine the number of independent sets of the Kneser graph K(9, 4) and find 366996244568643864340. Finally, we determine the number of intersecting families on an 8-set and find 14704022144627161780744368338695925293142507520.

متن کامل

Regular bipartite graphs and intersecting families

In this paper we present a simple unifying approach to prove several statements about intersecting and cross-intersecting families, including the Erdős–Ko–Rado theorem, the Hilton–Milner theorem, a theorem due to Frankl concerning the size of intersecting families with bounded maximal degree, and versions of results on the sum of sizes of non-empty cross-intersecting families due to Frankl and ...

متن کامل

Counting Intersecting and Pairs of Cross-Intersecting Families

A family of subsets of {1, . . . , n} is called intersecting if any two of its sets intersect. A classical result in extremal combinatorics due to Erdős, Ko, and Rado determines the maximum size of an intersecting family of k-subsets of {1, . . . , n}. In this paper we study the following problem: how many intersecting families of k-subsets of {1, . . . , n} are there? Improving a result of Bal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2012